[1] involute Σ (Spur and Helical Gear Design)

Fig. 1.1 Calculation Result Screen

1.1 Introduction

involute Σ (Spur & Helical) adopted many customer requests from those who used conventional software, and the software was revised in May, 2000. In addition, 3D tooth form stress analysis software and 3D error analysis software was added in May, 2001. The latest $\textit{involute } \varSigma$ can output tooth form in 3D data, and it can observe the meshing line of contact of gear rotation continuously by tooth form rendering (see Fig. 1.1). Other new functions to obtain gear strength standards and infer optimum addendum modification coefficient were added. Please review the following content.

1.2 Software Composition

Software is classified into 3 types of [ST], [PL], [SP]. Please see Table 1.1. Table 1 1 Software Composition

Table 1.1 Doltware composition								
Items	Page	ST	\mathbf{PL}	SP				
1. Setting Basic Rack	1	0	0	0				
2. Gear Dimension	1	0	0	0				
3. Reasoning 1	2	0	0	0				
4. Reasoning -2	2	0	0	0				
5. Tooth Profile Generating Figure	2	0	0	0				
6. Gear Meshing Figure	2	0	0	0				
7. Meshing Continuation Rotation	2	0	0	0				
8. Tooth Form DXF File Output	3	0	0	0				
9. Tooth Form Rendering Figure	3	0	0	0				
10. Gear Accuracy	3	0	0	0				
11. Design Data Management		0	0	0				
12. Steel Gear Strength	5	0	×	0				
13. Plastic Gear Strength	5	×	0	0				
14. Steel and Plastic Gear Strength		×	×	0				
15. Sliding Ratio Graph	4	0	0	0				
16. Hertz Stress Graph	4	0	0	0				
17. Bearing Load	5	0	0	0				
18. FEM Tooth Form Stress Analysis	6	0	0	0				
19. Transmission Error Analysis	6	0	0	0				
20. Fourier Analysis	7	0	0	0				
21.Tooth Form IGES File Output	3	0	0	0				
22.Flash Temperature	5	0	0	0				

Legend

ST: Steel Edition

 \bigcirc : Included

SP: Steel & Plastic Edition

PL: Plastic Edition

©∷Optional \triangle : Conditionally Included \times : Not Included

1.3 Software Content 1.3.1 Icon Button

There are 12 icon buttons: [Dimension], [Tooth Form], [Accuracy], [Strength], [Sliding Graph], [Hertz Stress Graph], [FEM], [Transmission Error], [Fourier Analysis], [Tooth Form Rendering], [Load Bearing], and [Flash Temp.]. There is also a [Tool] button that sets initial values of basic rack, etc.

1.3.2 Gear Types.

· Involute Spur Gear, Helical Gear

· External Gear and Internal Gear

1.3.3 Setting of Basic Rack, etc.,

Basic rack settings screen is shown in Fig. 1.2.

Combination of Gears: External Gear/External Gear, External Gear / Internal Gear

Basic Rack:

Full Depth Tooth, Stub Gear Tooth, Special

1.3.4 Gear Dimensions

Dimension of each part of gear is used to calculate contact ratio, sliding ratio, tooth thickness, etc. The contact rate of the gear with the undercut is calculated on the basis of the TIF diameter. And, the contact ratio is calculated by containing R in the tip (TIF: True Involute Form).

Fig. 1.2 Properties (Dimensions)

(1) Relation between addendum modification coefficient and center distance is the following 3 types.

- <1>The addendum modification coefficient of each gear decides center distance.
- <2>The decision of center distance gives the addendum modification coefficients for pinion and gear.
- <3>The center distance disregards addendum modification coefficient, and it is optionally decided.

(2) Setting system of addendum modification coefficient are the following 4 types.

- <1>The addendum modification coefficient is directly input.
- <2>The addendum modification coefficient is decided by the input of base tangent length.
- <3>The addendum modification coefficient is decided by the input of over ball distance.
- <4>The input of amount of addendum modification.
- The dimensions setting screen and selection screen in the addendum modification coefficient input are shown in Fig.1.3. The dimension result screen is shown in Fig. 1.4.

E Gear dimension				
Description	Symbol	Unit	Pinion	Gear
Module pitch	mn	mm	2	.00000
Number of teeth	z		15	24
Pressure angle	αn	deg	20	.00000 °
Helix angle	β	deg	20 0	' 0.0 "
Helix direction			Right hand	xn decision procedure.
Addendum modification coef.	xn		0.20000	 Base tangent length
Center distance	a	mm	41	.8 C Over ball distance
Thinning for backlash	fn	mm	0.20000	C Addendum modification
Face width	b	mm	20.00000	OK Cancel
Tip circle diameter	da	mm	36.72533	
Root circle diameter	df	mm	27.72533	No. of teeth(spap Mes.)
Ball diameter(Measurement)	dp	mm	3.665	Base tangent length
Tip radius	ra	mm	0.00000	Cutting xn
			ncel reasoning	1 reasoning2

Fig. 1.3 Dimensions Setting Screen

Σ Gear dimension calculation	result				×
Description	Symbol	Unit	Pinion	Gear	
Pitch circle diameter	d	mm	31.9253	51.0805	
Effective face width	bw	mm	2	0.0000	
Base circle diameter	db	mm	29.7702	47.6324	
Lead	pz	mm	275.5621	440.8993	
Addendum modification	Xm	mm	0.4000	0.0000	
Addendum	ha	mm	2.4000	2.0000	
Dedendum	hf	mm	2.1000	2.5000	
Whole depth	h	mm	4.5000	4.5000	
Clearance	С	mm	0.4882	0.4882	
Base helix angle	βω	deg	18 ° ·	14 / 50 "	
Operating transverse pressure angle	000	deg	22 ° 3	30 14 "	
Operating pitch diameter	dw	mm	32.2240	51.5584	
Nomal circular thickness	sn	mm	3.4328	3.1416	
Axial circular thickness	st	mm	3.6531	3.3432	
Transverse base pitch	pbt	mm	6.2351		
Normal pitch	pbn	mm	5.9043		
Contact length	ga	mm	8.5485		
Transverse contact ratio	203		1.3710		
Overlap contact ratio	εβ		:	1.0887	
Total contact ratio	εγ			2.4597	
Sliding ratio(tip)	σα		0.6930	0.7450	
Sliding ratio(root)	σβ		-2.9215	-2.2578	
N.T of teeth for span measurement	Zm		3	4	
Base tangent length	W	mm	15.5359	21.4675	
Base tangent length(design)	W	mm	15.3359	21.4475	
Over balls distance	dm	mm	37.7951	55.7494	
Over balls distance(design)	dm'	mm	37.3644	55.6983	
Caliper depth	Hj	mm	2.4814	2.0426	
Caliper tooth thickness	Sj	mm	3.4276	3.1400	
Caliper tooth thickness(design)	Sj'	mm	3.2162	3.1188	
Basic rack addendum factor	hac'		1.0000	1.0000	
Basic rack dedendum factor	hfc'		1.2500	1.2500	
Total backlash(transverse)	jt	mm		0.2515	-

Fig. 1.4 Dimension Result Screen

1.3.5 Reasoning-1

Reasoning-1 decides module and face width with respect to bending strength. Here, inferential module and face width are indicated, then, it is possible to advance to the next design. There are various combinations of module, face width, and material that can satisfy strength requirements. So, this function is very effective in summarizing the gear on the basis of the reasoning result. The reasoning 1 screen is shown in Fig. 1.5.

Σ Reasoning 1 (by gear str					
Description	Symbol	Unit Pinion		Gear	
Gear material			S45C (N)HB220 💌	
Heat treatment			normal	izing	
Hardness	·		HB2	20	
Allowable bending stress	σFlim	MPa	205.940	205.940	
Pinion torque	T	N m	100.000	160.000	
Pinion speed	n	rpm	1200.000	750.000	
Module pitch	mn	mm	2.250		
Number of teeth	z		15	24	
Pressure angle	an	deg	2	0.00000 °	
Helix angle	β	deg	20 ° 0 ' 0.0		
Face width	b	mm	2	9.250	
Bending safety factor	SF			1.200	
Tangential load	Ft	N	556	8.549	
Permission tangential load	Ftlim	N	5885.659	6723.675	
Tooth bending stress	σF	MPa	19.869	17.392	
Bending strength	Sft		1.057	1.207	
dule of the gear which satisfi	Calcu	lation Ca	ancel reasonin	g2 Design	

Fig. 1.5 Reasoning-1 Screen

1.3.6 Reasoning-2

The function of reasoning-2 decides the optimum addendum modification coefficient on the basis of specific sliding and meshing ratio. Fig. 1.6 graphs largest sliding ratio of pinion in red line, largest sliding ratio of gear in blue line, transverse contact ratio in green line. This case, an addendum modification coefficient of 0.2 of pinion is optimum tooth form, when it is judged from sliding ratio and contact ratio.

The decision reason of general addendum modification coefficients is undercut prevention, changes of center distance, adjustment of operating pressure angle, etc.

But, this reasoning function can decide the addendum modification coefficient based on the relationship between sliding ratio and contact ratio.

Fig.1.6 Reasoning-2 Screen

1.3.7 Tooth Profile

(1) The type of the tooth profile figure.

- · Tooth form generating
- · Contact tooth profile
- 3D tooth profile
- \cdot Rotation tooth profile

(2) CAD file

- DXF file (2D, 3D)
- · IGES file(3D)

The pinion tooth form generating profile is shown in Fig. 1.7, and the contact profile is shown in Fig. 1.8. Internal gear checks 3 kinds of interference (involute interference, trochoid interference, trimming). The 3D tooth form figure is shown in Fig. 1.9 and Fig. 1.10.

Figure (P)

Fig. 1.9 3D Tooth Form (P)

Fig. 1.10 3D Tooth Form (G)

1.3.8 DXF and IGES File Output of Tooth Profile

It is possible to output the gear tooth profile by 2D, 3D-DXF and 3D-IGES files.

- (1) The tooth profile output gives module shrinkage percentage
- and pressure angle correction factor for metal molds.
- (2) The output tooth numbers can be set manually.
- (3) The coordinate value is output to 8 decimal places.

Fig. 1.11 Output File Setting Screen

1.3.9 Tooth Profile Rendering

3D tooth profile meshing can be drawn as in Fig. 1.12. The pinion rotates in 1 degree increments if the gear meshing step angle is 1; the pinion stands still if the gear meshing step angle is 0. The tooth profile direction can be freely changed, extended and reduced. Fig. 1.12 displays figure and setting screen from the gear side, and Fig. 1.13 displays figure from the pinion side. In meshing part of Fig. 1.12, line of contact can be observed.

Fig. 1.12 Tooth Form Rendering Figure and Setting

Fig. 1.13 Tooth Profile Rendering

1.3.10 Gear Accuracy

The error tolerance (JIS B 1702-1 and JIS B 1702-2) of the new JIS is displayed in Fig. 1.14 and Fig. 1.15. The new JIS or old JIS may be chosen.

Σ Gear accuracy							
Dimension JIS B 1702-1 JIS B 1702-2							
Description	Symbol	Pinion	Gear				
Single pitch deviation	fpt	5	5.5				
Cumulative pitch deviation	Fpk	6.5	8				
Total cumulative pitch deviation	Fp	14	18				
Total profile deviation	Fα	5	6				
Total helix deviation	Fβ	7	7.5				
Tooth-tooth tangential comp. dev.	fi	7.5	8				
Total tangential deviation	F'i	22	26				
Profile form deviation	ffa	4	4.5				
Profile slope deviation	fHa	3.3	3.7				
Helix form deviation	ffβ	5	5.5				
Helix slope deviation	fΗβ	5	5.5				
			Unit [µm]				

Fig. 1.14 Gear Accuracy (JIS B 1702-1)

Σ Gear accuracy					
Dimension JIS B 1702-1 JIS B 1702-2					
Description	Pinion	Gear			
Total radial composite deviation	Fi"	18	22		
Tooth-tooth radial composite devi.	fi"	6.5	6.5		
Allowable radial runout	Fr	11	15		
			Unit [µm]		

Fig. 1.15 Gear Accuracy (JIS B 1702-2)

1.3.11 Noise Reduction (Specific Sliding and Hertz Stress Graph)

On the operating pitch circle, as a feature of the involute tooth form, contacting involute teeth make a rolling motion, while teeth of other kinds make a sliding motion.

The graph change of specific sliding and hertz stress of an example gear is displayed in Fig. 1.16 and Fig. 1.17 (standard spur gear of $m_n=2$, $Z_1=15$, $Z_2=24$, $\alpha=20^{\circ}$). And, rapid hertz stress modification in the first engagement is shown, because the dedendum specific sliding of the pinion is large. In this case, the problem is not solved, even if the accuracy is improved. Therefore, not only contact ratio but also considering design changes of specific sliding and Hertzian stress are necessary. There is a case in which a solution is reached by adjusting the transposition, in order to smooth the Hertzian stress. Plastic gear must be designed with highest attention as the heat caused by sliding motion considerably affects the gear. When the addendum modification coefficients are Xn1=0.24 and Xn2=-0.24 and the center distance is not changed, the curves of specific sliding ratio and Hertzian stress are shown in Fig. 1.18 and Fig. 1.19, respectively. When a profile modification is applied to the gear whose Hertzian stress is shown in Fig.1.19, the curve of Hertzian stress of the modified gear becomes smoother as shown in Fig. 1.20.

Fig.1.16 Sliding Ratio Graph-1

Fig.1.18 Sliding Ratio Graph-2

1.3.12 Zero Class Gear

The involute plane of the gear tooth type is important, but the dedendum shape is important as well. The graph of Fig. 1.21 is a test result (both tooth surface meshing) of a tooth form that connected the root of tooth curve in optional R; Fig. 1.22 shows the test result of theoretical trochoid curve tooth form.

In the case of a basic generating motion, the tooth root shape is a semi-trochoid curve decided by ① pressure angle, ② basic rack dedendum, ③ dedendum R, ④ addendum modification, ⑤ teeth number. *involute* Σ outputs the theoretical tooth form curve.

Fig. 1.21 Gear Test (optional dedendum R)

1.3.13 Gear Strength Calculation (Steel)

The gear strength calculation is based on JGMA401-01, 402-02. SI unit system or MKS unit system can be chosen for designs. The strength setting screen is shown in Fig. 1.23. The material selection displays the material selection form adapted to "heat treatment," as shown in Fig. 1.24. The strength calculation result is shown in Fig. 1.25.

Fig. 1.23 Gear Strength Input Screen

Fig. 1.24 Material Selection

Σ Steel gear strength res	sult (JGI	4A:401-	01,402-01)		
Description(bending)	Symbol	Unit	Pinion	Gear	
Allowable bending stress	σFlim	MPa	490.500	304.000	
Effective face width	b'	mm	20.000	20.000	
Tooth form factor	YF		2.826	2.575	
Load distribution factor	Yε		0	.729	
Angle of torsion factor	Yβ		0	. 833	
Life factor	KL		1.000	1.000	
Dimension factor	KFx		1.000	1.000	
Dynamic load factor	Kv		1	.051	
Call circumference power	Ft	N	6206.557		
Allowable tangential force	Ftlim	N	9055.124	6159.480	
Bending strength	Sft		1.459	0.992	
Tooth of bending stress	σF	MPa	336.198	306.323	
Description(bearing)	Symbol	Unit	Pinion	Gear	
Allowable pitting stress	σ Hlim	MPa	1530.000	1167.000	
Effective face width	bw	mm	20.000		
Region factor	ZH		2	. 293	
Life factor	KHL		1.000	1.000	
Contact ratio factor	Zε		0	.854	
Roughness factor	ZR		0.928	0.928	
Smooth velocity factor	ZV		0.966	0.966	
Hardness ratio factor	ZW		1.000	1.000	
Load distribution factor	KHA		1.000		
Dynamic load factor	Kv		1.050		
Call circumference power	Fc	N	6264.617		
Allowable tangential force	Fclim	N	3853.918	2242.132	
Pitting syrength	Sfc		0.615	0.358	
Hertzian stress	σH	MPa	1950.686	1950.686	

Fig. 1.25 Strength Calculation Result

1.3.14 Gear Strength Calculation (Plastic)

The basis of the strength calculation of the plastic gear is an equation of Lewis, and the material allowable stress value adopts experimental values considering temperature and life. As a material combination, the strength calculation of $[plastic \times plastic]$ and $[steel \times plastic]$ is possible.

SI unit system or MKS unit system can be chosen for designs. Input screen of the plastic gear strength calculation is shown in Fig. 1.26. The tooth profile factor decides the tooth profile of gear dimension given in Fig. 1.3. The strength calculation result is shown in Fig. 1.27. The plastic material is polyacetal (M90, KT20, GH25) and polyamide (Nylon).

Σ Plastic gear strength item					
Material symbol	M90-44	-		×M90	
Description	Symbol	Unit	Pinion	Gear	
Torque	T	Nom	100.000	160.000	
Rotational frequency	n	rpm	1200.000	750.000	
Number of load cycles			1000000		
Pitch line velocity at operating PD		m/s	2.0059		
Type of lubrication	——		grease 🗸		
Temperature	I	*0	60	.000	
Overload factor	Ko		1.000		
Bending safety factor	SF		1.200		
Pitting safety factor	SH		1.150		

Fig. 1.26 Input Screen of Gear Strength

Σ Plastic gear strength result 🛛 🔀						
Description(bending)	Symbol	Unit	Pinion	Gear		
Allowable bending stress	σFlim	MPa	7.316	7.795		
Tooth form factor	YF		0.551	0.526		
Speed correction factor	Kv		1	.384		
Temperature factor	KT		0	.650		
Lubrication factor	KL.		1.000			
Material factor	KM		0.750			
Tangential load	Ft	N	62.646			
Permission tangential load	Ftlim	N	134.353	136.597		
Bending strength	Sft		2.145	2.180		
Bending stress	σb	MPa	3.411	3.575		
Description(pitting)	Symbol	Unit	Pinion	Gear		
Permission pitting stress	σHlim	MPa	36.177	40.579		
Young modulus	E	MPa	1721.067	1721.067		
Tangential load	Fc	N	62.646			
Permission tangential load	Fclim	N	292.977	368.600		
Tooth surface intensity	Sfc		4.067	5.116		

Fig. 1.27 Strength Calculation Result

1.3.15 Bearing Load

The load that affects the gear and the load that affects bearing are calculated. Twenty kinds of load affecting each bearing, such as contact force and normal force, are calculated. The calculation result is shown in Fig. 1.28.

Fig. 1.28 Bearing Load

1.3.16 Flash Temperature

The flash temperature which arises on a tooth surface is calculated. The setting screen is shown in Fig. 1.29. Then, the flash temperature graph of the non-modified tooth profile is shown in Fig. 1.30.

Σ Item of flash temperature						
Description	Symbol	Unit	Pinion	Gear		
Gear temperature	GTc	°C	7	0.000		
Oil temperature	Tc	°C	40.000			
Roughness of tooth plane(Ra)	σ1,2	μm	0.400	0.400		
Friction coefficient	μ			0.060		
Profile modification	「 「		Not condu	cted 🗾		
OK						

Fig. 1.29 Input Screen of Flash Temperature

Fig. 1.30 Flash Temperature

[2] 2D Tooth Form Stress Analysis Software

2D tooth form stress analysis is optional *involute* Σ (Spur and Helical Gear Design) software. Please observe software composition (Table 1.1).

2.1 Operation

Stress analysis is simply accomplished by clicking the [FEM] icon after the strength calculation ends. Setting screen of FEM analysis is shown in Fig. 2.1. It is possible to change load and number of partitions and Poisson ratio and Young modulus.

Σ Item of FEM tooth								
© 2D FEM C 3D	2	D,3D Selec 3D Tooth	ļ					
Description	Symbol	Unit	Pinion	Gear				
Material symbol			SCM420	SCM440				
Young modulus	E	MPa	205800.0	205800.0				
Poisson ratio	mu		0.300	0.300				
No. of partitions(depth)	Vd		8	8				
No. of partitions(width)	Hd		20	19				
Position of the load point	Pn		2	2				
Load	Ft	N	3103	.28				
Color gradation	nc		100					
Displacement magnification	Sd 100							
	iOK Cancel							

Fig. 2.1 FEM Analysis Setting Screen

2.2 Stress is Analyzed by Load that Affects the Tooth

This software calculates 5 kinds of stress (σ_x , σ_y , shearing stress τ , main stress σ_1 , σ_2). Gear reliability can be enhanced by evaluating the actual stress that affects tooth and by calculating the gear strength. The maximum main stress σ_1 is shown in Fig. 2.2, the equality line of stress figure of the smallest main stress σ_2 is shown in Fig. 2.3.

2.3 Tooth Form Modification Quantity is Calculated by Displacement Quantity of Tooth Form

The tooth form modification is a useful method for improving gear running performance. Normal pitch difference arises by deflection of the tooth in the driving gear and tooth of driven gear, even if it is an accurate gear.

The improper contact of mating teeth caused by the difference in this normal pitch becomes a cause of vibration and noise. The tooth form modification is one method for solving this. The tooth form displacement figure is shown in Fig. 2.4, the graph of tooth form modification is shown in Fig. 2.5.

Fig.2.2 Maximum Principal Stress σ₁

Fig.2.3 Smallest Principal Stress σ₂

[3] 3D Tooth Form Stress Analysis Software

3D tooth form stress analysis is optional *involute* Σ (Spur and Helical Gear Design) software. In the case of a helical gear, the number of partitions of the face width direction are decided according to the tooth form pitch number of partitions of initial stage setting screen Fig. 3.1. The division of the tooth depth direction is divided on basis of contact line. The smallest main stress, maximum principal stress and tooth form displacement figure are shown in Fig. 3.2 to Fig. 3.7.

E Item of FEM tooth									
2D,3D Select									
C 2D FEM		3D Tooth	Diviation						
(€ 3D		e	5						
Description	Symbol	Unit	Pinion	Gear					
Material symbol	· · · · · · · · · · · · · · · · · · ·		SCM420	SCM440					
Young modulus	E	MPa	205800.0	205800.0					
Poisson ratio	mu		0.300	0.300					
No. of partitions(depth)	Vd		6	6					
No. of partitions(width)	Hd								
Position of the load point	Pn								
Load	Ft	N	6206	.56					
Color gradation	nc		100						
Displacement magnification	Sd		100						
jOK Cancel									
Fig 3.1 Initial Stage Setting Screen									

Fig.3.4 Tooth Form Displacement (Helical Gear)

3D Tooth for	m stress analy	sis(Pinion) 🔀
displacement	sigma 2	sigma 1
sigma 1max= 379 sigma 1min=-12;	9.311(MPa) 2.214(MPa)	
379.311		
126.015		
-122.214		

Fig 3.3 Maximum Principal Stress σ_1 (Helical Gear)

Fig.3.5 Smallest Principal Stress σ_2 (Spur Gear)

Fig 3.6 Maximum Principal Stress σ_1 (Spur Gear)

Fig 3.7 Tooth Form Displacement (Spur Gear)

[4] Transmission Error Analysis Software

Transmission error analysis software is optional for *involute* Σ (Spur & Helical). The transmission error analysis software requires FEM tooth form stress analysis software.

4.1 Rotation Transmission Error Analysis of Gear

The software uses the following five items as elements to analyze transmission error:

- ①Tooth profile error
- 2 Pitch variation
- 3Deflection of tooth
- (4) Runout of shaft

5Sliding speed

Gear rotation transmission error can be predicted at the gear design stage, verification by actual product test and measurement is not necessary

The object gear can be analyzed as a spur gear in case of 2D tooth form stress analysis. However, when 3D tooth form stress analysis is used, the transmission error analysis of spur gear and helical gear is possible. Setting screen of transmission error is shown in Fig. 4.1 and Fig. 4.2.

Fig.4.1 Transmission Error Setting Screen (P)

Fig.4.2 Transmission Error Setting Screen (G)

4.2 Evaluation of Transmission Error (1)

The rotation transmission error graph is shown in Fig. 4.3, the wow and flutter graph is shown in Fig. 4.4. And, it can be confirmed by the noise frequency.

Fig.4.3 Transmission Error

Fig. 4.4 Wow and Flutter

4.3 Evaluation of Transmission Error (2)

Transmission error analytical result and wow and flutter graph of a helical gear are shown in Fig. 4.5 and Fig. 4.6, respectively. The three-dimensional transmission error analysis also considers meshing plane and back interference.

Fig.4.5 Transmission Error

Fig 4.6 Wow and Flutter

[5] Fourier Analysis Software

Transmission error analysis of the spur gear (mn=2, Z1=Z2=40) is carried out, and the frequency analysis results are as follows.

The pinion tooth profile error is set to $10 \,\mu\text{m}$, and shaft runout is set to $3\mu\text{m}$. However, there is no pitch error of the pinion and tooth profile error of the gear and shaft runout of the gear. The setting screen is shown in Fig. 5.1. The transmission error graph for a pinion made to rotate at 1200 rpm is shown in Fig. 5.2.

The result of the frequency analysis is shown in Fig. 5.3. The frequency of 800 Hz (1200 min-1 \times 40 Hz/60 sec) of the first frequency and the secondary 1600 Hz, third, fourth appeared clearly in the analytical result.

Fig.5.1 Transmission Error Setting Screen (P)

Fig 5.2 Transmission Error Analysis

[6] Transmission Error Analysis of Plastic Gears

The transmission error was measured by single tooth surface contact testing equipment, while the load was given by the drive of molding plastic helical gear (POM). The gear dimensions are shown in Table 1.

Table 6.1			
	Unit	Pinion Gear	
Module	mm	1	
Number of teeth		37 37	
Pressure angle	deg	20	
Helix angle	deg	20	
Face width	mm	10	
Center distance	mm	39.47	
torque	Nm	9.8	
Rotational speed	\min^{-1}	6	

A measurement result is shown in Fig. 6.1 and a frequency analysis is shown in Fig. 6.2. Analysis shows a similar corrugation figure and maximum value of the transmission error of 30µm are observed on both results of the actual measurement and the simulation. And, the 3.7Hz frequency and the 7.4Hz have remarkably appeared, as shown in Fig.6.4.

รี 0.4

Fig.6.1 Transmission Error Experimental

Fig.6.3 Transmission Error by Simulation

Fig.6.4 Frequency Analysis by Simulation